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1. Buffer overflows, a bit of background

� You know... The classic stack overflow….

#include <string.h> 

void foo (char *bar) { 

char c[12]; 
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char c[12]; 
strcpy(c, bar); // no bounds checking... 

}

int main (int argc, char **argv) { 
foo(argv[1]); 

} 
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1. Buffer overflows, a bit of background

� There are also heap and integer 
overflows….
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overflows….



1. Buffer overflows, a bit of background

� Could lead to arbitrary code execution
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1. Buffer overflows, a bit of background

� Those were  the old days…
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� Very few problems for the attacker:
� Null bytes

� Shellcode size and other constraints

� Shellcode development
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2. Reviewing defence-in-depth techniques

� Stack canaries 
approach:
� The compiler 

place a value 

before the return 
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before the return 

address when a 

function is called 

and check that the 

value has not 

changed when the 

function finalize.



2. Reviewing defence-in-depth techniques

� Bypassing stack canaries:

� Implementation can be not correct
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� Implementation can be not correct

� It can be a statistical problem



2. Reviewing defence-in-depth techniques

� Bypassing stack canaries:

� Windows: SEH overwriting
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� Protected by SafeSEH and so on…

� Unix: Other (more complex) 

techniques…



2. Reviewing defence-in-depth techniques

� Non-eXecutable Stack approach:

� Effective implementation in 
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� Effective implementation in 
hardware. Widely deployed (every 

computer since 2001 allow this)

� Code is code and data is data

� However, it is easy to bypass



2. Reviewing defence-in-depth techniques

� Bypassing Non-eXecutable Stack:

� Save the payload in the heap
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� Save the payload in the heap

� Return into libc (standard C library) 

attacks



2. Reviewing defence-in-depth techniques

� 64bits hardware saves the way:

� In 64 bits personal computers, 
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� In 64 bits personal computers, 
arguments are loaded in registers, 

not in the stack.

� Return into libc attack is not 
possible



2. Reviewing defence-in-depth techniques

� 64bits hardware saves the way:

� Return oriented programming
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� Return oriented programming
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2. Reviewing defence-in-depth techniques

� ASLR (Address Space Layout 
Randomization) approach:
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� The code is loaded in different 

memory regions each time



2. Reviewing defence-in-depth techniques

� Bypassing ASLR:

� It could be an statistical question
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� It could be an statistical question



2. Reviewing defence-in-depth techniques

� Bypassing ASLR:

� Maybe not all the libraries are 
randomly loaded
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2. Reviewing defence-in-depth techniques

� Mixed approach:

� Standalone use of this techniques is
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� Standalone use of this techniques is
not very useful

Technique
A

Technique
B

Better
results



2. Reviewing defence-in-depth techniques

� Non-eXecutable Stack + ASLR:

� Make very difficult the return 
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� Make very difficult the return 
attacks.



2. Reviewing defence-in-depth techniques

ASLR

NX 

Stack
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Each technique makes successful 
exploitation more difficult

Stack

Canaries



2. Reviewing defence-in-depth techniques

� There exists more defence-in-depth 
techniques
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� Attackers also develop new 

techniques to bypass the 
countermeasures
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3. Impact in the CC

� We start from a detected buffer 
overflow

� Unique characteristics
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� Unique exploit path

� Attack potential calculation



3. Impact in the CC

Buffer 
Overflow
Detected

Attack
Potential

Calculation

Defence in 
Depth

modifiers

Attack
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Attack
Potential

Calculation

Defence in 
Depth

Modifiers

Estimated

Attack

Potential



3. Impact in the CC

Defence in depth technique Attack potential factor

Stack Canaries (Windows) x 1.2

SafeSEH x 1.3

Non-eXecutable Stack x 1.35

ASLR x 1.50
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ASLR x 1.50

Stack Canaries (Unix) x 1.52

NX Stack + ASLR x 1.54

NX Stack + ASLR + Stack Canaries (Windows) x 1.62

NX Stack + ASLR + Stack Canaries (Windows) + SafeSEH x 1.66

NX Stack + ASLR + Stack Canaries (Linux) x 1.68

… …
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4. What to do?

� Whenever it is possible 

40

� Through compiler

� Through Operating System





ThanksThanks forfor youryour attentionattention!!

Javier Tallón
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