
Overflowing Attack Potential

Scoring Scoring DefenceDefence--inin--DepthDepth

Javier Javier TallónTallón GuerriGuerri
11ICCC 11ICCC -- TurkeyTurkey

2

3

4

1.Buffer overflows, a bit of background

2.Reviewing and bypassing defence-in-
depth techniques

5

3.Impact in the CC

4.What to do?

1.Buffer overflows, a bit of background

2.Reviewing and bypassing defence-in-
depth techniques

6

3.Impact in the CC

4.What to do?

1. Buffer overflows, a bit of background

� You know... The classic stack overflow….

#include <string.h>

void foo (char *bar) {

char c[12];

7

char c[12];
strcpy(c, bar); // no bounds checking...

}

int main (int argc, char **argv) {
foo(argv[1]);

}

1. Buffer overflows, a bit of background

8

1. Buffer overflows, a bit of background

9

1. Buffer overflows, a bit of background

10

1. Buffer overflows, a bit of background

� There are also heap and integer
overflows….

11

overflows….

1. Buffer overflows, a bit of background

� Could lead to arbitrary code execution

12

1. Buffer overflows, a bit of background

� Those were the old days…

13

� Very few problems for the attacker:
� Null bytes

� Shellcode size and other constraints

� Shellcode development

1.Buffer overflows, a bit of background

2.Reviewing defence-in-depth techniques

3.Impact in the CC

14

3.Impact in the CC

4.What to do?

2. Reviewing defence-in-depth techniques

� Stack canaries
approach:
� The compiler

place a value

before the return

15

before the return

address when a

function is called

and check that the

value has not

changed when the

function finalize.

2. Reviewing defence-in-depth techniques

� Bypassing stack canaries:

� Implementation can be not correct

16

� Implementation can be not correct

� It can be a statistical problem

2. Reviewing defence-in-depth techniques

� Bypassing stack canaries:

� Windows: SEH overwriting

17

� Protected by SafeSEH and so on…

� Unix: Other (more complex)

techniques…

2. Reviewing defence-in-depth techniques

� Non-eXecutable Stack approach:

� Effective implementation in

18

� Effective implementation in
hardware. Widely deployed (every

computer since 2001 allow this)

� Code is code and data is data

� However, it is easy to bypass

2. Reviewing defence-in-depth techniques

� Bypassing Non-eXecutable Stack:

� Save the payload in the heap

19

� Save the payload in the heap

� Return into libc (standard C library)

attacks

2. Reviewing defence-in-depth techniques

� 64bits hardware saves the way:

� In 64 bits personal computers,

20

� In 64 bits personal computers,
arguments are loaded in registers,

not in the stack.

� Return into libc attack is not
possible

2. Reviewing defence-in-depth techniques

� 64bits hardware saves the way:

� Return oriented programming

21

� Return oriented programming

2. Reviewing defence-in-depth techniques

22

2. Reviewing defence-in-depth techniques

� ASLR (Address Space Layout
Randomization) approach:

23

� The code is loaded in different

memory regions each time

2. Reviewing defence-in-depth techniques

� Bypassing ASLR:

� It could be an statistical question

24

� It could be an statistical question

2. Reviewing defence-in-depth techniques

� Bypassing ASLR:

� Maybe not all the libraries are
randomly loaded

25

2. Reviewing defence-in-depth techniques

� Mixed approach:

� Standalone use of this techniques is

26

� Standalone use of this techniques is
not very useful

Technique
A

Technique
B

Better
results

2. Reviewing defence-in-depth techniques

� Non-eXecutable Stack + ASLR:

� Make very difficult the return

27

� Make very difficult the return
attacks.

2. Reviewing defence-in-depth techniques

ASLR

NX

Stack

28

Each technique makes successful
exploitation more difficult

Stack

Canaries

2. Reviewing defence-in-depth techniques

� There exists more defence-in-depth
techniques

29

� Attackers also develop new

techniques to bypass the
countermeasures

2. Reviewing defence-in-depth techniques

30

2. Reviewing defence-in-depth techniques

31

1.Buffer overflows, a bit of background

2.Reviewing defence-in-depth techniques

3.Impact in the CC

32

3.Impact in the CC

4.What to do?

3. Impact in the CC

� We start from a detected buffer
overflow

� Unique characteristics

33

� Unique exploit path

� Attack potential calculation

3. Impact in the CC

Buffer
Overflow
Detected

Attack
Potential

Calculation

Defence in
Depth

modifiers

Attack

34

Attack
Potential

Calculation

Defence in
Depth

Modifiers

Estimated

Attack

Potential

3. Impact in the CC

Defence in depth technique Attack potential factor

Stack Canaries (Windows) x 1.2

SafeSEH x 1.3

Non-eXecutable Stack x 1.35

ASLR x 1.50

35

ASLR x 1.50

Stack Canaries (Unix) x 1.52

NX Stack + ASLR x 1.54

NX Stack + ASLR + Stack Canaries (Windows) x 1.62

NX Stack + ASLR + Stack Canaries (Windows) + SafeSEH x 1.66

NX Stack + ASLR + Stack Canaries (Linux) x 1.68

… …

1.Buffer overflows, a bit of background

2.Reviewing defence-in-depth techniques

3.Impact in the CC

36

3.Impact in the CC

4.What to do?

4. What to do?

37

4. What to do?

38

4. What to do?

39

4. What to do?

� Whenever it is possible

40

� Through compiler

� Through Operating System

ThanksThanks forfor youryour attentionattention!!

Javier Tallón

42

Epoche & Espri, S.L.
Avda. de la Vega, 1
28108, Alcobendas,
Madrid, Spain.

eval@epoche.es

